sjwhitworth/golearn
{ "createdAt": "2013-12-26T13:06:14Z", "defaultBranch": "master", "description": "Machine Learning for Go", "fullName": "sjwhitworth/golearn", "homepage": "", "language": "Go", "name": "golearn", "pushedAt": "2024-01-15T13:55:44Z", "stargazersCount": 9449, "topics": [], "updatedAt": "2025-11-25T14:15:08Z", "url": "https://github.com/sjwhitworth/golearn"}GoLearn
Section titled “GoLearn”GoLearn is a ‘batteries included’ machine learning library for Go. Simplicity, paired with customisability, is the goal. We are in active development, and would love comments from users out in the wild. Drop us a line on Twitter.
twitter: @golearn_ml
Install
Section titled “Install”See here for installation instructions.
Getting Started
Section titled “Getting Started”Data are loaded in as Instances. You can then perform matrix like operations on them, and pass them to estimators. GoLearn implements the scikit-learn interface of Fit/Predict, so you can easily swap out estimators for trial and error. GoLearn also includes helper functions for data, like cross validation, and train and test splitting.
package main
import ( "fmt"
"github.com/sjwhitworth/golearn/base" "github.com/sjwhitworth/golearn/evaluation" "github.com/sjwhitworth/golearn/knn")
func main() { // Load in a dataset, with headers. Header attributes will be stored. // Think of instances as a Data Frame structure in R or Pandas. // You can also create instances from scratch. rawData, err := base.ParseCSVToInstances("datasets/iris.csv", true) if err != nil { panic(err) }
// Print a pleasant summary of your data. fmt.Println(rawData)
//Initialises a new KNN classifier cls := knn.NewKnnClassifier("euclidean", "linear", 2)
//Do a training-test split trainData, testData := base.InstancesTrainTestSplit(rawData, 0.50) cls.Fit(trainData)
//Calculates the Euclidean distance and returns the most popular label predictions, err := cls.Predict(testData) if err != nil { panic(err) }
// Prints precision/recall metrics confusionMat, err := evaluation.GetConfusionMatrix(testData, predictions) if err != nil { panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error())) } fmt.Println(evaluation.GetSummary(confusionMat))}Iris-virginica 28 2 56 0.9333 0.9333 0.9333Iris-setosa 29 0 59 1.0000 1.0000 1.0000Iris-versicolor 27 2 57 0.9310 0.9310 0.9310Overall accuracy: 0.9545Examples
Section titled “Examples”GoLearn comes with practical examples. Dive in and see what is going on.
cd $GOPATH/src/github.com/sjwhitworth/golearn/examples/knnclassifiergo run knnclassifier_iris.gocd $GOPATH/src/github.com/sjwhitworth/golearn/examples/instancesgo run instances.gocd $GOPATH/src/github.com/sjwhitworth/golearn/examples/treesgo run trees.go- English
- [中文文档(简体)]!(doc/zh_CN/Home.md)
- [中文文档(繁体)]!(doc/zh_TW/Home.md)
Join the team
Section titled “Join the team”Please send me a mail at stephenjameswhitworth@gmail.com



